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Abstract

We describe a hierarchical model for assessing the reliability of multi-component systems.
Novel features of this model are the natural manner in which failure time data collected at
either the component or subcomponent level is aggregated into the posterior distribution, and
pooling of failure information between similar components. Prior information is allowed to
enter the model in the form of actual point estimates of reliability at nodes, or in the form of
prior groupings. Censored data at all levels of the system are incorporated in a natural way
through the likelihood specification. The methodology is illustrated with an example from an
anti-aircraft missile system.

1 Background

Reliability of complex systems such as missile systems and automotive systems is a challenging statis-
tical problem. Perhaps the most difficult aspect of system reliability assessments is the integration of
component, subsystem and system data and prior expert opinion. Usually of interest is determination
of how the reliability changes over time. This information is often used to make statistical prediction
of system reliability to determine warranty (in the case of automotive systems) and/or shelf-life (in the
case of missile systems). While much attention has been paid to theoretical system reliability and em-
pirical component reliability, there are few instances where the two have been combined for full system
empirical system reliability when data have been collected on components (or subcomponents) and the
full system. In this paper we address this issue central to most major reliability problems by addressing
two important analytical concerns: (1) the integration of available information at various levels to as-
sess system reliability and (2) estimating reliability growth or degradation. Methodology for integrating
available information in a consistent fashion has proven problematic, and this paper describes a Bayesian
hierarchical model that resolves this difficulty. Johnson et al (2003) present a general approach to this
problem for components which are judged to be successes or failures. In this paper we generalize the
approach presented there to allow for continuous failure times.

We present a self-consistent (one that addresses data at different levels and reconciles that with the
system structure) model for system reliability. In Section 2, we propose a model for system reliability
estimation allowing component, subsystem, and full system testing. That model is illustrated with an
application to anti-aircraft missile system data in Section 3. We conclude with a summary of results and
suggestions for future work in Section 4.

2 Model

To illustrate the baseline model, consider a system composed of three subsystems. The methods presented
here allow for additional levels of granularity in system structure. In general, we assume that failure time
data and prior expert opinion are available at different levels, and that our primary goal in modeling such
systems is the evaluation of the reliability function, RS(t|ΘS) (where Θ is possibly vector valued), the
probability that the system will function beyond time t, RS(t|ΘS) = Pr(TS ≥ t|ΘS). Because the system
is made up of several components or subsystems, we employ the use of a subscript S to indicate system
reliability versus the reliability of a component (R2(t|Θ2) indicates the reliability function of component
C2 or the missile round, for example). Note that this may be specified by the component/subsystem



failure time distributions and the system structure as will be demonstrated in our anti-aircraft missile
example in Section 3.

This is of interest because it indicates whether the reliability exhibits increasing or decreasing failure
rates (indicative of lifecycle position). We will demonstrate that the Bayesian approach presented here
estimates a distribution for the hazard function, allowing estimation of the probability of an increasing
or decreasing failure rate.

Several sources of information relevant to estimating system reliability are considered. The first is
failure time data collected from actual component or subsystem tests. The second source of information
takes the form of expert opinion regarding the reliability at time t. A third, less precise source of
information is expert opinion regarding the similarity of reliabilities of groups of components within the
system or across different systems. For example, in the missile system depicted above, an expert may
assert that the reliability of the battery coolant unit (BCU) is similar to the reliability of a BCU in a
related missile system, or that reliabilities of the missile round and BCU are similar. However, the expert
may not have knowledge regarding the specific probability that any component within a group of similar
components functions. Finally, we incorporate the statistical notion that terminal nodes (i.e., components
in the reliability block diagram having no subcomponents themselves) may also be grouped into sets of
comparably reliable components without the guidance of actual expert opinion. In the baseline model,
such information is modeled via an exchangeability assumption on the parameters of the failure time
distribution.

To model these sources of information, we first assume that the failure time distributions of compo-
nents in distinct branches of the reliability block diagram are conditionally independent, and that the
success of the system requires successful functioning of all components. Extensions to systems that in-
clude redundant components, or in which component failures are not independent, are discussed in the
summary. Nodes in the reliability diagram are labeled Ci, where i indicates the component or subcom-
ponent index. The function a(i) provides the parent component (or system) containing (sub)component
i, while g(i,m) indicates the group of components that expert m asserts have similar failure rates to
component i. We let Ri(t|Θi) denote the reliability of component Ci at time t. The set of components
for which test data is available is denoted by S0, and within this set xij is the failure time of the jth test
of component i, where j = 1, . . . , ni.

Finally, for terminal nodes in the reliability block diagram, a hierarchical prior specification may be
obtained by further assuming that each terminal node’s failure time distribution parameters are drawn
from a common underlying distribution. For notational simplicity, we assume that the parameters of
the failure time distribuions of the terminal nodes are, a priori, exchangeable, but this restriction may
be relaxed by using expert judgment to group the terminal nodes. If components have different failure
time distributions (for example, one component has a Weibull distribution and another component has
a lognormal distribution) then this hierarchical specification is inappropriate and strength on terminal
nodes will only be borrowed if the components have the same failure time distribution.

As discussed in the previous section, combining data and prior information at different levels within a
reliability diagram has often proven problematic, both from the perspectives of computational tractabil-
ity and model consistency. Our solution to this conundrum is to simply re-express non-terminal node
probabilities in terms of terminal node probabilities using deterministic relations derived from an exami-
nation of the system reliability diagram. For example, the system diagram suggests that the cumulative
distribution function of the system is

FS(t|ΘS) = 1 −

4∏

i=2

[1 − Fi(t|Θi)]

= 1 −

4∏

i=2

Ri(t|Θi),

where Ri(t|Θi) is the reliability function for the ith component. Applying the chain rule for differentiation,



we find that the sampling distribution of the system failure times is induced by

fS(t|ΘS) =

4∑

i=2

fi(t|Θi)
∏

j 6=i

(1 − Fj(t|Θi)). (1)

This is illustrated with failure time data from an anti-aircraft missile system in Section 3.
Combining these assumptions leads to a joint posterior distribution on the baseline model parameters

proportional to

[ΘS ,Θ1, . . . ,Θ4|TS,T1, . . .T4, η, ζ] ∝

nS∏

i=1

4∑

j=2

fj(ti|Θj)
∏

k 6=j

Rk(ti|Θk) ×

×

n2∏

i=1

f2(ti|Θ2) ×

n3∏

i=1

f3(ti|Θ3) (2)

×

n4∏

i=1

f4(ti|Θ4) ×

4∏

i=2

π(Θi|η)

×
∏

π(η)

where π(Θi|η) is the hierarchical prior specificiation of the parameters for the terminal node failure time
distributions. In (2), values of non-terminal node probabilities are assumed to be expressed in terms of
the appropriate functions of terminal node probabilities, as defined from the system fault diagram.

3 Example

As a simple demonstration of the proposed methodology, consider a system consisting of only three
components which are all required to work in order for the system as a whole to work. Therefore, there
are actually four reliability functions of interest, one for each of the three components and one additional
reliability function which is the system reliability function. Furthermore, suppose that at each component
we conduct ni = 20, i = 2, . . . , 4 tests and record the time until failure. We also collect nS = 10 full system
tests independent of the component data and observe the time until failure. Given this system structure
and the test data, we can explore the features of the proposed Bayesian system reliability modeling.

Failure times from the anti-aircraft missile system were observed at both the system level and subsys-
tem level. We observed 10 system tests, and 20 from each of the subsystems. Goodness-of-fit techniques
revealed that a reasonable model for the distribution of failure times of the subsystems is Weibull, that
is

fi(t) =
αi

βi

(t/βi)
α

i exp [− (t/βi)
α

i ] , i = 2, 3, 4

so that Θi = (αi, βi). Our prior specification for Θi (π(Θ|η)) in the example is that the αi and βi are all
exchangeable and are from a common gamma distribution, that is,

π(αi|λa, ζa) ∝ αλa−1

i exp (−ζaαi)

π(βi|λb, ζb) ∝ αλb−1

i exp (−ζbαi) .

Then, to complete the hierarchical specification, we propose that λa, ζa, λb, ζb have exponential distribu-
tions, each with its own parameter.

Given the specification above, we use a successive substitution Markov chain Monte Carlo (MCMC)
procedure (Gelfand and Smith 1990) where each component of the joint posterior distribution was updated
one-at-a-time. The posterior distributions that are presented below were based on 1,000,000 draws from
the joint posterior distribution with a 100,000 burn-in period. We did not employ thinning as the
convergence diagnostics of Raftery and Lewis (1995) revealed that autocorrelation was not a major
problem.



(a) (b)
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Figure 1: Posterior distributions (as a function of time) for the reliability function of each of the compo-
nents in the anti-aircraft missile system. They are organized as (a), the posterior distribution of the full
system C1, (b) is the posterior distribution for the missile round reliability, (c) is the posterior distribution
for the BCU, and (d) is the posterior distribution for the unnamed component C5.

The posterior distributions (as a function of time) for the reliability function of each of the components
in the example system are presented in Figure 1. They are organized as (a), the posterior distribution of
the full system C1, (b) is the posterior distribution for the missile round reliability, (c) is the posterior
distribution for the BCU, and (d) is the posterior distribution for the unnamed component C5. These
plots

4 Conclusions

The proposed hierarchical model offers several advantages over existing models for system reliabilities.
Among these are the ease of including diverse sources of information at different levels of the system in
the model for overall system reliabilities, a coherent framework for incorporating multiple sources of prior
expert opinion through the treatment of expert opinion as (imprecisely-observed) data, and the natural
elimination of aggregation errors through the definition of non-terminal probabilities using the assumed
structure of the system reliability block diagram and terminal node failure time distributions.
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